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Abstract

Many satisfiability modulo theories solvers implement a variant of the DPLL(T ) frame-
work which separates theory-specific reasoning from reasoning on the propositional abstrac-
tion of the formula. Such solvers conclude that a formula is unsatisfiable once they have
learned enough theory conflicts to derive a propositional contradiction. However some
problems, such as the diamonds problem, require learning exponentially many conflicts. We
give a general criterion for establishing lower bounds on the number of theory conflicts in
any DPLL(T ) proof for a given problem. We apply our criterion to two different state-of-the-
art symbolic partial-order encodings of a simple, yet representative concurrency problem.
Even though one of the encodings is asymptotically smaller than the other, we establish the
same exponential lower bound proof complexity for both. Our experiments confirm this
theoretical lower bound across multiple solvers and theory combinations.

1 Introduction

Many high-level verification tools rely on satisfiability modulo theories (SMT) solvers to dis-
charge verification conditions in a variety of first-order logic theory theories. State-of-the-art
SMT solvers decide such problems by implementing variations on the DPLL(T ) framework.
The DPLL(T ) framework integrates a theory-specific solver with efficient search over the
propositional abstraction of the formula. For this, DPLL(T ) uses a propositional (SAT) solver
that searches for a satisfying assignment to the propositional abstraction of the formula. When
such an assignment is found, a theory solver checks that this propositional assignment is
theory consistent. If it is not, a theory conflict (or T -conflict) clause is added, summarizing
the inconsistency and preventing the SAT solver from exploring this part of the search space
again. The process continues until either a theory consistent satisfying assignment is found,
or a contradiction can be derived purely on the propositional level using the learned theory
conflicts. While usually efficient in practice, there are well-known problems, such as the “dia-
monds problem” [22], on which the DPLL(T ) framework cannot derive a contradiction using a
polynomial number of theory conflicts. This issue has resurfaced in recent work on worst-case
execution time [14]. This limitation stems from the fixed alphabet of the DPLL(T ) theory con-
flicts. Despite work on addressing this inherent inefficiency, it is still an open problem [7, 23].

In this paper, we prove a general theorem for establishing lower bounds on the number of
T -conflicts in the DPLL(T ) calculus [20] required to prove that a given formula is unsatisfiable.
The theorem relies on the notion of non-interfering critical assignments: propositionally satisfying
assignments that contain disjoint T -conflicts. To the best of our knowledge, this is the first
attempt at establishing a general framework for establishing lower bounds for DPLL(T ) proofs.

We apply this theorem to study the DPLL(T ) proof complexity of proving a safety property
of a simple, yet challenging concurrency problem. The problem appears in the software

1



A Concurrency Problem with Exponential DPLL(T) Proofs Hadarean, Horn, and King

verification competition (SV-COMP) and is of broad historical interest [21, 11]. We focus on
encodings recently implemented in a bounded model checker [3] because they have been
successfully used to find concurrency-related bugs in software such as the Apache HTTP
server, PostgreSQL and the Linux kernel [3]. Informally, these encodings symbolically model
a certain partial-ordering between memory accesses, similar to the happens-before relations in
distributed systems [17].

Contributions. The main contributions of this paper are as follows: (1) we give a new result
for establishing lower bounds on the size of DPLL(T ) proofs of unsatisfiability; (2) we propose
a new problem challenge for the SMT community, whose solution is directly relevant to finding
concurrency-related bugs in software; (3) we establish a factorial lower bound on the size of
DPLL(T ) proofs of unsatisfiability for this challenge problem; finally, (4) we experimentally
confirm the hardness of this problem.

Organization. We prove the lower bound theorem in section 2. We introduce the problem
challenge and explain how to generate two equisatisfiable partial-order encodings in section 3.
Given these encodings, we formalize the DPLL(T ) proof size complexity of the challenge
problem (section 4) and experimentally confirm its complexity (section 5). We conclude with
a discussion of related work and future research directions in section 6.

2 Non-interfering Critical Assignments

In this section, we give a general theorem for establishing lower bounds on the number of
T -conflicts in all proofs that a formula φ is unsatisfiable in the DPLL(T ) calculus [20]. The
theorem is based on the notion of sets of non-interfering critical assignments for φ.

We assume readers are familiar with standard notions from SMT such as T -conflicts, T -
validity, T -lemmas, DPLL(T ), etc. In DPLL(T ), a proof of unsatisfiability for a T -formula
consists of a combination of learning T -valid lemmas and performing resolution steps on the
propositional abstraction, until the empty clause is derived. As in [20], we restrict the proofs
to work over the fixed alphabetA of T -atoms in the input formula and that all T -lemmas are
clauses. We use a simplified view of the DPLL(T ) calculus [20] that only uses two rules: (i)
propositional resolution (Res) and (ii) learningT -valid clauses over the literals ofA (T -learn).
We ignore T -propagation and splitting-on-demand [6].

Notation. We fix a set of propositional variables X and use ` to denote literals over this set.
A clause C is a set of literals interpreted as their disjunction. The empty clause � denotes false.
A partial assignment M is a set of literals that does not contain both a variable and its negation.
Partial assignments are interpreted as a conjunction

∧
`∈M ` and are always propositionally

consistent. An assignment M is a partial assignment s.t. for all v ∈ X either v ∈ M or ¬v ∈ M.
The negation of a clause is a set of literals ¬C = {¬` | ` ∈ C} and is interpreted as a conjunction.

The propositional abstraction function B is an injective map fromA intoX. TheT -literals,
written LA, are the set of literals over A. We lift B to work over T -literals and sets of T -
literals. We denote by L a T -valid clause over LA, |=T

∨
t∈L t, and ¬L will denote a T -conflict.

A T -conflict is a set of T -literals whose conjunction is T -unsatisfiable, ¬L |=T �. A minimal
T -conflict has the additional property that every strict subset is T -satisfiable.

Proofs. We assume the input T -formula φ has already been converted to CNF and is repre-
sented as a finite set of clauses C1, . . .Cα over the variables in X, the set of T -atomsA, and the
boolean abstraction function B : A→ X. A Fixed-Alphabet-DPLL(T ) proof has the form:

C1, . . . ,Cα, . . . ,Ck, . . . ,Cβ = �
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where each Ck for α < k ≤ β is derived from a previous clause using either the resolution rule
(Res) or theory learning (T -learn). Let Ci ⊗` C j denote propositional resolution on `.

C1, . . . ,Ck L ⊆ LA |=T
∨

t∈L t
C1, . . . ,Ck,LB

T -learn
C1, . . . ,Ck 1 ≤ i < j ≤ k ` ∈ Ci ¬` ∈ C j

C1, . . . ,Ck,Ci ⊗` C j
Res

The rule T -learn adds a new clause LB that corresponds to the propositional abstraction of a
T -valid clause. Clauses derived by T -learn are called T -lemmas. T -learn is more general
than Lazy Theory Learning [20], which requires the literals to be in the partial assignment.

Critical Assignments. Given aT -formulaφ, an assignment M is critical if it satisfies the initial
propositional abstraction of φ (i.e., M |=

∧α
i=1 Ci) and there is exactly one minimal T -conflict

¬L such that ¬LB ⊆ M. We denote by Q a set of critical assignments for φ, all of which can be
enumerated as M1, . . . ,M|Q| and where ¬Li denotes the minimal T -conflict for Mi. We say that
Q is non-interfering whenever, for all Mi , M j in Q, ¬LBi is not a subset of M j. In other words,
no two assignments in Q contain the same T -conflict.

Lemma 2.1. Let M be a critical assignment for φ with the minimal T -conflict ¬L, and Π be a Fixed-
Alphabet-DPLL(T ) proof that φ is unsatisfiable. There is a T -learn application Ck ∈ Π such that
¬LB ⊆ ¬Ck ⊆M.

Proof. The assignment M does not satisfy the last clause Cβ = � in Π. Therefore, there is some
first clause Ck that M does not satisfy in Π. The clause Ck cannot be an input clause as M |= Ci
for 1 ≤ i ≤ α. Additionally, Ck cannot be the result of Res: since Ck is the first unsatisfied clause,
all M |= Ci for i < k, and resolving Ci and Ci′ for i , i′ < k results in a clause satisfied by M. Thus
Ck must be the result of a T -learn application and M 6|= Ck. Since M is an assignment which
does not satisfy Ck, M must contain the negation of all literals in Ck. Equivalently, ¬Ck ⊆ M.
Let T be the T -lemma corresponding to Ck: Ck = TB. As ¬LB is the unique minimal subset of
M that maps to a minimal theory conflict, L ⊆ T. Therefore, ¬LB ⊆ ¬Ck ⊆M. �

Intuitively Lemma 2.1 states that, for each critical assignment M, the proof of unsatisfiability
must contain a clause, derived by T -learn, which rules out M as a model of φ in the theory T .

Theorem 2.2. Let φ be an unsatisfiable T -formula, and let Q be a non-interfering set of critical
assignments for φ. Then all Fixed-Alphabet-DPLL(T ) proofs that φ is unsatisfiable contain at least |Q|
applications of T -learn.

Proof. Let Π be any Fixed-Alphabet-DPLL(T ) proof. We will show that there exists a surjective
partial map from T -lemmas in Π onto critical assignments in Q that contain the same T -
inconsistency. We examine the set of partial maps F over (α, β] indices such that F(k) = j only
if LBj ⊆ Ck and Ck is a T -learn application. Let the partial function F∗ be a partial function that
maps onto the maximal number of distinct M ∈ Q among all such maps F. If F∗ maps onto all
elements in Q, there are at least |Q| applications T -learn in Π. If |Q| = 0, the property trivially
holds on Π.

For the remainder of this proof, assume that |Q| ≥ 1. Suppose for contradiction that F∗ is
not surjective. We can then select some critical assignment M j such that for all k ∈ (α, β] either
k is not in the domain of F∗ or F∗(k) , j.

By Lemma 2.1, there exists a T -learn application Ck ∈ Π such that ¬LBj ⊆ ¬Ck ⊆ M j. As
LBj ⊆ Ck, we know that it is possible for F∗ to map Ck to some Mm ∈ Q. As F∗ is maximal and
there is no conflict mapped to M j, F∗(k) = m for some m , j. By the construction of F∗, LBm ⊆ Ck.
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Recall that ¬Ck ⊆ M j. Thus ¬LBm ⊆ ¬Ck ⊆ M j. As M j contains both ¬LBj and ¬LBm for some
distinct Mm in Q, this contradicts the assumption that Q is non-interfering.

We can now conclude by contradiction that F∗maps some clause that is the result ofT -learn
in Π onto each M ∈ Q. Therefore Π contains at least |Q| applications of T -learn. �

There are many instances in the literature of diamond benchmarks for which exponential
lower bounds on the number of T -conflicts have been given [22, 7, 18, 2, 14]. Theorem 2.2 can
be seen as a generalization of the lower bound arguments for the diamond benchmarks. The
rest of this paper is devoted to a novel application of Theorem 2.2.

3 Challenge problem

In this section we present a challenge problem based on the fpk2013 SV-COMP concurrency
benchmark [1]. This problem was first introduced in 1976 to illustrate the need for auxiliary
variables in compositional proof rules for concurrent programs [21], and most recently it has
resurfaced as a challenge problem for automated verification tools [11]. Consider the following
simple shared memory program with N + 1 threads and a shared memory location x:

Thread T0 Thread T1 Thread TN

local v0 := [x] local v1 := [x]
. . .

local vN := [x]
assert(v0 ≤ N) [x] := v1 + 1 [x] := vN + 1

The memory at location x is denoted by [x]. We assume that [x] is initially 0. Each thread Ti
reads the value at memory location x into a CPU-local register vi. For i ≥ 1, thread Ti overwrites
the memory at location x with the new value vi +1. For the rest of the paper, we denote the read
of memory location x in T0 by rassert. The reads and writes on memory location x in thread Ti for
i ≥ 1 are denoted by ri and wi, respectively. We follow the SV-COMP convention and assume
sequential consistency [16]. Therefore, if we just consider the concurrent program T1 ‖ T2, we
get the following six interleavings of shared memory accesses: (1) r1; w1; r2; w2, (2) r1; r2; w1; w2,
(3) r1; r2; w2; w1, (4) r2; r1; w1; w2, (5) r2; r1; w2; w1, (6) r2; w2; r1; w1. The different orders can result
in different final values of [x]. For example, r1; w1; r2; w2 results in the final value 2 at memory
location x, whereas r1; r2; w1; w2 results in the final value [x] = 1.

We want to check that the assertion v0 ≤ N in thread T0 cannot be violated. Intuitively, this
assertion holds because each of the other N threads increments [x] at most once. For a fixed
N, we want to prove this automatically using bounded model checking. While it is easy to
automatically prove this property on each separate interleaving, the number of interleavings
grows exponentially ((2N + 1)!÷ 2N). Next, we explain how to generate symbolic partial-order
encodings that formalize all interleavings as a single quantifier-free SMT query.

Partial-order encodings. We formalize two quantifier-free and equisatisfiable partial-order
encodings of a concurrency semantics called SC-relaxed consistency [15]: a cubic-sized en-
coding (E3) and a quadratic-sized encoding (E2). The formula generated by each encoding is
satisfiable if and only if the safety property in the shared memory program can be violated.

To get E3 and E2, we make four simplifying assumptions about the program P under
scrutiny: (i) P’s weak memory concurrency semantics equates to SC-relaxed consistency [15]; (ii)
P is well-structured; (iii) all loops inPhave been unrolled so that the only remaining control-flow
statements in P are if-then-else branches; finally, (iv) every shared memory location accessed
by P is known at compile-time. Avoiding these restrictions is beyond the scope of this paper
that concerns itself with SMT solvers rather than program analysis techniques.
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PPO ,
∧{

(guard(e) ∧ guard(e′))⇒ (ce ≺ ce′ ) | e, e′ ∈ E : e� e′
}

WW[x] ,
∧
{(cw ≺ cw′ ∨ cw′ ≺ cw) ∧ sw , sw′ | w,w′ ∈Wx ∧ w , w′}

RW[x] ,
∧
{cw ≺ cr ∨ cr ≺ cw | w ∈Wx ∧ r ∈ Rx}

RFTO[x] ,
∧{

guard(r)⇒
∨
{sw = sr | w ∈Wx} | r ∈ Rx

}
RF3[x] ,

∧{
(sw = sr)⇒

(
guard(w) ∧ val(w) = rvr ∧ cw ≺ cr

)
| r ∈ Rx ∧ w ∈Wx

}
FR[x] ,

∧{(
sw = sr ∧ cw ≺ cw′ ∧ guard(w′)

)
⇒ (cr ≺ cw′ ) | w,w′ ∈Wx ∧ r ∈ Rx

}
E

3 ,
∧{

RFTO[x] ∧ RF3[x] ∧ FR[x] ∧WW[x] ∧ RW[x] | x ∈ 〈ADDRESS〉
}
∧ PPO

RF2[x] ,
∧{

(sw = sr)⇒
(
cw = supr ∧ guard(w) ∧ val(w) = rvr ∧ cw ≺ cr

)
| r ∈ Rx ∧ w ∈Wx

}
SUP[x] ,

∧{(
cw � cr ∧ guard(w)

)
⇒ (cw � supr) | r ∈ Rx ∧ w ∈Wx

}
E

2 ,
∧{

RFTO[x] ∧ RF2[x] ∧ SUP[x] ∧WW[x] ∧ RW[x] | x ∈ 〈ADDRESS〉
}
∧ PPO

Figure 1: Given a shared memory program structure P = 〈E,�, val, guard〉, E3 and E2 encode
P’s SC-relaxed consistency [15] with a cubic and quadratic number of constraints, respectively.

The formulas generated by both encodings E3 and E2 have three parts: (i) clock constraints
that partially order memory accesses, similar to the happens-before relation in distributed
systems [17]; (ii) value constraints that determine what values are read or written by the program
if those clock constraints hold; and (iii) selection constraints that associate each read to a specific
write event. Our symbolic partial-order encoding is therefore parameterized by three theories:
TC for encoding the clock constraints, TV for encoding constraints on the symbolic program
values, and TS for encoding selection constraints. We assume that TC’s signature includes
strict and non-strict partial-order relations, denoted by ≺ and �, respectively. We also assume
that TV’s signature can encode a decidable fragment of common machine arithmetic such as
bitvector or Presburger arithmetic. TS is an uninterpreted theory.

Definition 3.1. A shared memory program structure is a tuple P =
〈
E,�, val, guard

〉
where E is a

finite set of events,� is a partial order on E, val : E→ TV-terms and guard : E→ TV-formulas. Let
〈ADDRESS〉 be the set of memory locations. We assume that the set of events E in P can be partitioned
into reads Rx and writes Wx on memory location x ∈ 〈ADDRESS〉. Given an event e in E, let ce and
se be a TC-variable (clock variables) and TS-variable (selection variables), respectively. For each
read r ∈ R, let rvr be a unique TV-variable, called read variable. The function val maps a write event
w ∈W to a TV-term val(w) built from read variables.

The partial order � is the preserved program order (PPO) [4, 3]. The intuition behind PPO
is that it determines which events cannot be reordered in any execution of the program. For
sequentially consistent programs, the preserved program order corresponds to the order of
instructions in each thread. Note that 〈E,�〉 can be relaxed for weaker forms of consistency
such as TSO, e.g. [3]. Intuitively, given an event e in E, guard(e) denotes the necessary condition
for e to be enabled. The equality sw = sr in the theory TS means that a read event r is ‘selected’
so that its input value is equal to the output of a write event w. That is to say, when sw = sr
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holds, the TV-variable rvr is equal to the term val(w).

Example 3.2. The program described in section 3 for N = 2 corresponds to the following:

• E = {winit, r1,w1, r2,w2, rassert} is partitioned into Rx = {r1, r2, rassert} and Wx = {winit,w1,w2}

where x ∈ 〈ADDRESS〉 is the concrete memory location accessed by threads T0, T1 and T2.

• According to PPO: winit � r1 � w1, winit � r2 � w2, and winit � rassert.

• The val function is defined as val(winit) , 0, val(w1) , rvr1 + 1 and val(w2) , rvr2 + 1.

• Since the program has no if-then-else statements, guard(e) = true for all events e in E.

Figure 1 shows how to generate the cubic-size E3 and quadratic-size E2 partial-order en-
coding for a given shared memory program structure P =

〈
E,�, val, guard

〉
. The first four

formulas, PPO, WW[x], RW[x], and RFTO[x], are shared by E3 and E2. The constraint PPO
encodes the preserved program order�. The remaining constraints are with respect to some
concrete memory location x. To model the information flow in the program, we encode a form
of the read-from relation [4, 3]. For a fixed memory location x this relation defines a function
from Rx to Wx. We model this through the selection variables sr and sw, for each read r ∈ Rx
and write w ∈ Wx, together with the equality sr = sw. The intuition is that the value of a write
event w ∈ Wx is observed by a read event r ∈ Rx iff sr = sw. The RFTO constraints ensures that
at least one such equality holds for every read. WW encodes that all writes on the same shared
memory location are totally ordered in the happens-before relation and cannot have the same
selection value, and RW encodes that every read r and write w on the same shared memory
location satisfy that r happens-before w, or vice versa. Note that if ≺ is a total order, then WW
is equivalent to the clock and selection variables being distinct. (In practice, the sw variables
are optimized out as distinct constants.) The same is not true for RW because two reads can
have the same clock variables.

The main difference between E3 and E2 is how they encode values being overwritten in
memory. A read r in Rx can read from a write w in Wx if w is the most recent write to x that
happens before r. In the case of E3, this is encoded by FR which corresponds to the ‘from-read’
axiom [4, 3], also known as the ‘conflict relation’ [8]. This formula introduces a cubic number of
constraints. By contrast, E2 encodes the SUP constraint that requires only a quadratic number
of constraints. For this, SUP introduces a new variable supr for every read r in Rx to encode
the least upper bound (supremum) of all writes in Wx that happen-before r. Since the set
{cw | w ∈Wx}, for all memory locations x, is totally ordered with respect to ≺ in TC by WW[x],
supr is the maximum of all writes in Wx that happen-before r in Rx according to ≺. It was
previously shown in [15, Theorem 4] that for a given shared memory program structure P the
formulas E3 and E2 are equisatisfiable.

4 Lower Bounds for Quadratic and Cubic Encodings

We show that the challenge problem from section 3 requires DPLL(T ) to enumerate at least
N! theory conflicts before it finds a proof of unsatisfiability, for either of the E3 or E2 encoding
where N is the number of threads.

We begin by constructing a formula that encodes the challenge program using the E3

encoding. As E3 is not directly in CNF, we perform the following simplifications in order to
apply Theorem 2.2: (i) all of the guards guard(e) are ignored because they always evaluate
to true, and (ii) implications are distributed across conjunctions in the RF3[x] constraints
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φ3
≡ cwinit ≺ crassert︸        ︷︷        ︸

PPO

∧

∧
i=1...N

cwinit ≺ cri ≺ cwi︸                    ︷︷                    ︸
PPO

∧

∧
w,w′∈W,w,w′

cw , cw′ ∧ sw , sw′︸                                 ︷︷                                 ︸
WW[x]

∧

∧
w∈W,r∈R

cw , cr︸            ︷︷            ︸
RW[x]

∧

∧
w∈W,r∈R

(sw = sr)⇒ cw ≺ cr︸                            ︷︷                            ︸
RF3[x]

∧

∧
r∈R

(swinit = sr)⇒ 0 = rvr︸                         ︷︷                         ︸
RF3[x]

∧

∧
i=1...N,r∈R

(swi = sr)⇒ rvri + 1 = rvr︸                                      ︷︷                                      ︸
RF3[x]∧

w,w′∈W,r∈R

(sw = sr ∧ cw ≺ cw′ )⇒ cr ≺ cw′︸                                                ︷︷                                                ︸
FR[x]

∧

∧
r∈R

∨
w∈W

sw = sr

︸               ︷︷               ︸
RFTO[x]

∧ rvrassert > N︸      ︷︷      ︸
assert(v0≤N)

Figure 2: The E3 encoding for the challenge problem (when ≺ is total).

[A ⇒ (B ∧ C) iff (A⇒ B) ∧ (A⇒ C)]. We also assume that ≺ is a total order in TC, and that
TV is either bit-vector, Presburger, or real arithmetic. We denote by T the standard combined
theory TC + TV + TS. Figure 2 shows the resulting quantifier-free T -formula, denoted by φ3.
Note that φ3 is in CNF if we interpret implications in the obvious way. Note that in the RF3[x]
constraints, each val(w) term has been replaced by either 0 or rvri + 1.

Let SN be the set of all permutations over [1,N]. Consider the following sequence of events
that can be constructed from the permutation function π in SN:

σ(π) : winit, rπ(1),wπ(1), rπ(2),wπ(2), . . . , rπ(N),wπ(N), rassert.

The run of σ(π) corresponds to satisfying the following clock and selection constraints:

cwinit ≺ crπ(1) ≺ cwπ(1) ≺ · · · ≺ crassert , swinit = srπ(1) ,
∧

i=1...N−1

swπ(i) = srπ(i+1) , and swπ(N) = srassert

with distinct values for all sw variables. A first-order variable assignment νπ can be constructed
to satisfy the above constraints. (An explicit construction of νπ and proofs for Lemma 4.1 and
Theorem 4.3 are given in the extended version [13].) For each TC or TS literal `, we include `B

in an assignment Mπ if ` holds under νπ. Consider the following TV-conflict:

¬Lπ =
{
rvrπ(1) = 0

}
∪

{
rvrπ(i) + 1 = rvrπ(i+1) | i = 1 . . .N − 1

}
∪

{
rvrπ(N) + 1 = rvrassert

}
∪

{
rvrassert > N

}
.

Note that each ` ∈ ¬Lπ is unit-propagated by the TC and TS literals already in Mπ on the
propositional abstraction of φ3. We add ¬LBπ to Mπ. The remaining TV equality atoms in φ3

are added negatively. Now Mπ satisfies the propositional abstraction of φ3.

Lemma 4.1. The assignment Mπ is a critical assignment for φ3 with the theory conflict ¬Lπ.

Theorem 4.2. All Fixed-Alphabet-DPLL(T ) proofs forφ3 contain at least N! applications ofT -learn.

Proof. Let Q = {Mπ | π ∈ SN}. For each pair of distinctπ andπ′ in SN, there is some adjacent pair
of events with a different order in σ(π) and σ(π′). Select k so that

〈
rπ(k), rπ(k+1)

〉
,

〈
rπ′(k), rπ′(k+1)

〉
.

The literal (rvrπ(k) + 1 = rvrπ(k+1) )
B is in ¬Lπ and is not in Mπ′ . Thus ¬LBπ is not a subset of Mπ′ ,

and Q is non-interfering. The lemma follows directly from Theorem 2.2. �
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Theorem 4.3. Letφ2 be theE2 encoding of the challenge problem. All Fixed-Alphabet-DPLL(T ) proofs
that φ2 are unsatisfiable contain at least N! application of T -learn.

An important difference between the diamond benchmarks and this problem is that for
diamonds it is reasonable to describe all minimal T -conflicts as they each also correspond to
critical models. For the fkp problem, the encoding is more complex, and there are other classes
of T -conflicts. The set Q identifies those T -lemmas that must appear during solving.

5 Experiments

In this section, we give experimental results that confirm the lower bounds on the DPLL(T )
proofs for the two encodings of the problem challenge (section 3). Our experiments are carried
out along three dimensions: we use four SMT solvers (Boolector v2.0.6 [9], CVC4 2015-03-14 [5],
Yices v2.3.0 [10], and Z3 2015-03-29 [19]), and we evaluate both the cubic-size and quadratic-size
encoding (E3 and E2) with respect to four different SMT-LIB theory combinations.

We performed all experiments on a 64-bit machine running GNU/Linux 3.16 with 2 Intel
Xeon 2.5 GHz cores and 4 GB of memory. The timeout for each individual benchmark is 1 hour.
Recall that E3 and E2 are parameterized by three theories, TC, TS and TV. We experiment with
the theory of reals TR, the theory of integers TZ, and the theory of bit-vectors TBV. In our
experiments, we instantiate 〈TC,TS,TV〉 to four configurations such that TC = TS:

(1) “real-clocks-int-val”: 〈TR,TR,TZ〉, (3) “bv-clocks-int-val”: 〈TBV,TBV,TZ〉, and
(2) “real-clocks-bv-val”: 〈TR,TR,TBV〉, (4) “bv-clocks-bv-val”: 〈TBV,TBV,TBV〉.

CVC4 and Z3 were run on all benchmarks. Boolector is only used on the fourth configuration,
i.e. purelyTBV benchmarks. Yices was run on the “real-clocks-int-val” and “bv-clocks-bv-val”
configurations. We further distinguish between the SMT-LIB benchmarks by labelling them
with E3 or E2. For example, ‘real-clocks-bv-val-E3’ identifies benchmarks generated with the
cubic encoding in which TC, TS and TV are respectively instantiated as TR, TR, and TBV.

For all the “*-bv-val” benchmarks (except CVC4 for “real-clocks-bv-val”), the solvers are
essentially encoding the problem in propositional logic and using a SAT solver.1 The process of
encoding into propositional logic (bit-blasting) enables the solver to learn clauses not necessarily
expressible in the original alphabet of the input atoms. We therefore call these solver and
configuration pairs bit-blasted combinations. All other solver and configuration pairs are called
DPLL(T ) combinations. The DPLL(T ) combinations are the “*-int-val” configurations, and the
run of CVC4 on “real-clocks-bv-val”.2 DPLL(T ) combinations use Fixed-Alphabet-DPLL(T )
proofs, whereas bit-blasted combinations generally do not.

Given an instantiation of 〈TC,TS,TV〉, we separately encode the fkp2013-unsat concur-
rency benchmarks with E3 and E2 for all N ∈ [3, 9]. There are a total of 56 different unsatisfiable
SMT-LIB benchmarks. The size of each benchmark depends on N and whether we used
E

3 or E2. For example, for N = 9, the total number of symbolic expressions in E3 is 4085,
whereas E2 yields only 1604 symbolic expressions.

Figure 3 charts the number of conflicts reported by each solver during execution.3 Execu-
tions that exceeded the time limit of 1 hour are not included. The x-axis corresponds to N. The
y-axis corresponds to the number of conflicts generated by the solver and has a logarithmic
scale. The legend for the chart groups together both the E3 (bold lines) and E2 (thin lines) for a

1CVC4 was run with the flag --bitblast=eager on “bv-clocks-bv-val” benchmarks [12].
2In this configuration CVC4 does not eagerly reduce TBV to SAT.
3Elapsed time and memory usage for the experiment is available in the extended version [13].

8



A Concurrency Problem with Exponential DPLL(T) Proofs Hadarean, Horn, and King

3 4 5 6 7 8 9

101

102

103

104

105

106

107

N!

Number of threads (N)

N
um

be
r

of
SA

T
co

nfl
ic

ts

cvc4-real-clocks-int-val-{E3, E2
}

cvc4-real-clocks-bv-val-{E3, E2
}

cvc4-bv-clocks-int-val-{E3, E2
}

cvc4-bv-clocks-bv-val-{E3, E2
}

z3-real-clocks-int-val-{E3, E2
}

z3-real-clocks-bv-val-{E3, E2
}

z3-bv-clocks-int-val-{E3, E2
}

z3-bv-clocks-bv-val-{E3, E2
}

yices-real-clocks-int-val-{E3, E2
}

yices-bv-clocks-bv-val-{E3, E2
}

boolector-bv-clocks-bv-val-{E3, E2
}

Figure 3: Experimental results for the fkp2013-unsat benchmark using four SMT solvers and
four SMT-LIB theory combinations. The graph shows the factorial growth of the number of
SAT conflicts in both the cubic-size and quadratic-size partial-order encoding as N increases.

solver and theory specification. These are further grouped into bit-blasted benchmarks (dotted
lines) and DPLL(T ) (solid lines). We also plot N! as a black line. The goal of the Figure 3 is to
convey the overall trends instead of compare individual data points.

We examine the number of SAT conflicts as it is a uniform and readily available statistic that
is a lower bound on the number of proof steps taken by each solver. Across all combinations,
the number of conflicts observed is above the N! line. Thus the N! theory conflict lower
bound proofs given in section 4 holds for the DPLL(T ) combinations. Our theoretical lower
bounds do not extend to the bit-blasted combinations. Nevertheless, our experiments show
that the number of SAT conflicts are two orders of magnitude higher than N! for bit-blasted
combinations. We therefore conjecture that a similar N! lower bound exists for Res proofs
for the bit-blasted combinations. We also examined CVC4’s more detailed statistics on the
DPLL(T ) combinations. We confirmed that the number of TV-conflicts is always above N! on
the DPLL(T ) combinations.

6 Conclusion

In this paper, we have demonstrated a theoretical factorial lower bound on the number of
T -learn applications in all DPLL(T ) proofs for a challenge problem of historical interest using
two state-of-the-art encodings. Our encodings are most closely related to [3, 15]. Experiments
confirm the theoretical lower bound for DPLL(T ) proofs and show a strong relationship to the
number of SAT conflicts in Res-proofs for bitblasted bitvector encodings. Both the theoretical
relationships and the empirical relationships hold over a cubic E3 and a quadratic E2 encoding.
Our experiments are therefore particularly significant for state-of-the-art tools such as CBMC
(which implements a variant of E3). We believe that the kind of analysis we have undertaken
throughout this paper provides an important diagnostic practice in the development of SMT

9



A Concurrency Problem with Exponential DPLL(T) Proofs Hadarean, Horn, and King

encodings. Future work will focus on handling the value constraints for partial-order encod-
ings of weak memory concurrency and improving the performance of the SMT solvers on such
benchmarks by moving outside of Fixed-Alphabet-DPLL(T ) proofs.
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