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Sorry for giving a 25 minute presentation,
but I did not have time to prepare a 5 minute one.
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Conflict Set

I Unsatisfiable set of equations and negated equations

Example
I {

g(c1, . . . , cn) = d, f(a) = a, a = b, b = f(b), f(a) 6= f(b)

}

I Transitivity
I Congruence: t1 = s1 and . . . tn = sn implies

f(t1, . . . , tn) = f(s1, . . . , sn)
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Why do we want small conflict sets? (1)

I Speed up SMT decision procedures

Input SMT problem Ψ

Propositional logic abstraction φ

Check satisfiability of φ
with SAT-solver

Report unsatisfiability of Ψ

Check consistency of φ
with T -solver (congruence closure)

Report satisfiability of Ψ

Add C to φ as clause

Treat equations as propositional variables

UNSAT

SAT

consistent

inconsistent
counterexample (conflict set) C

Smaller conflict set
I Eliminate more spurious counterexamples at once
I Fewer loops
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Why do we want small conflict sets? (2)

I Smaller proofs
I Proof corresponding to transitivity

⊥

f(a) 6= f(b) f(a) = f(b)

b 6= f(b), f(a) = f(b) b = f(b)

a 6= b, b 6= f(b), f(a) = f(b) a = b

f(a) 6= a, a 6= b, b 6= f(b), f(a) = f(b) f(a) = a
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Why do we want small conflict sets? (2)

I Smaller proofs
I Proof corresponding to congruence

⊥

f(a) 6= f(b) f(a) = f(b)

a 6= b, f(a) = f(b) a = b
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Conflict Set vs Explanation

Explanation for s = t

I Set of equations E, such that E |= s = t

I E ∪ {s 6= t} is a conflict set

Conflict set C
I There is s 6= t ∈ C, such that
I C \ {s 6= t} is an explanation for s = t
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Small Explanation Decision Problem

Given a set of equations E, a target equation s = t and k ∈ N,
does there exist an explanation E′ ⊆ E of s = t with |E′| ≤ k?

NP-complete

Small Explanation is in NP
1. Guess E′ ⊆ E, which is polynomial in input size.
2. Check E′ |= s = t with congruence closure algorithm in

polynomial time.
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NP-hardness

Reduction of SAT
I Given a propositional logic formula in CNF

φ = C1 ∧ · · · ∧ Cn

I Using variables x1, . . . , xm
I Construct a set of equations E and a target equation s = t,

such that

φ is satisfiable

if and only if

There exists an explanation E′ ⊆ E of s = t with |E′| ≤ 3n+4m−1
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Example of Reduction

φ = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x3)

Equations E (a− b a = b ∈ E)
Target Equation c1 = c′3

c1 t1(x̂2)

t1(x̂1)

t1(x̂3)

c′1t1(>2)

t1(>1)

t1(⊥3)

c2

t2(x̂2)

t2(x̂3)

c′2

t2(⊥2)

t2(>3)

c3

t3(x̂1)

t3(x̂3)

c′3

t3(⊥1)

t3(⊥3)

x̂1

x̂2

x̂3

>1⊥1

>2⊥2

>3⊥3
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Proof Arguments

I Translate assignment I to subset of equations E′:

xi ∈ I ⇔ x̂i = >i ∈ E′

¬xi ∈ I ⇔ x̂i = ⊥i ∈ E′
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Proof Arguments

I Translate assignment I to subset of equations E′:

xi ∈ I ⇔ x̂i = >i ∈ E′

¬xi ∈ I ⇔ x̂i = ⊥i ∈ E′

I Every short explanation contains the translation of an
assignment
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Proof Arguments

I Translate assignment I to subset of equations E′:
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assignment

I Satisfying assignments translate to short explanations

I Non satisfying assignments do not translate to
explanations
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NP-completeness of short explanation problem

In NP
I Guess explanation and check with congruence closure

algorithm

NP-hardness
I Reduction of NP-hard problem SAT

φ with n clauses and m variables is satisfiable

if and only if

There exists an explanation E′ ⊆ E of s = t with |E′| ≤ 3n+4m−1
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Small explanations as shortest paths

f(a)

a

b

f(b)

1

1

1

1
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Small explanations as shortest paths
a

b

t1

t2

t3

c

d

f(a, c)

f(b, d)

1

1

1

1

1

1

1

1

2
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Conclusion

I Small conflict sets are desirable

I Obtaining small conflict sets is NP-complete

I Find algorithms/heuristics to construct small conflict sets
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Thank you for your attention !

Questions ?


