NP-completeness of small conflict set generation for congruence closure

Andreas Fellner^{1,2} Pascal Fontaine³ Georg Hofferek⁴ Bruno Woltzenlogel Paleo^{2,5}

¹ IST-Austria, Klosterneuburg (Austria)

² Vienna University of Technology (Austria)

³ Inria, Loria, U. of Lorraine (France)

⁴ IAIK, Graz University of Technology (Austria)

⁵ Australian National University (Australia)

SMT Workshop San Francisco, 19th of July 2015 Sorry for giving a 25 minute presentation, but I did not have time to prepare a 5 minute one.

Example

► {
$$g(c_1, ..., c_n) = d, f(a) = a, a = b, b = f(b), f(a) \neq f(b)$$
}

Conflict Set

Unsatisfiable set of equations and negated equations

Example

- $\blacktriangleright \{ a = b, b = f(b), f(a) \neq f(b) \}$
- Transitivity
- ► Congruence: $t_1 = s_1$ and ... $t_n = s_n$ implies $f(t_1, ..., t_n) = f(s_1, ..., s_n)$

Conflict Set

Unsatisfiable set of equations and negated equations

Example • { $a = b, \quad f(a) \neq f(b)$ } • Transitivity • Congruence: $t_1 = s_1$ and $\dots t_n = s_n$ implies $f(t_1, \dots, t_n) = f(s_1, \dots, s_n)$

Speed up SMT decision procedures

Input SMT problem Ψ

Speed up SMT decision procedures

Smaller conflict set

- Eliminate more spurious counterexamples at once
- Fewer loops

- Smaller proofs
- Proof corresponding to transitivity

$$f(a) \neq a, a \neq b, b \neq f(b), f(a) = f(b) \qquad f(a) = a$$

$$a \neq b, b \neq f(b), f(a) = f(b) \qquad a = b$$

$$b \neq f(b), f(a) = f(b) \qquad b = f(b)$$

$$f(a) \neq f(b) \qquad f(a) = f(b)$$

$$\bot$$

Smaller proofs

Proof corresponding to congruence

Conflict Set vs Explanation

Explanation for s = t

- Set of equations E, such that $E \models s = t$
- $E \cup \{s \neq t\}$ is a conflict set

Conflict set C

- There is $s \neq t \in C$, such that
- $C \setminus \{s \neq t\}$ is an explanation for s = t

Small Explanation Decision Problem

Given a set of equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \leq k$?

Small Explanation Decision Problem

Given a set of equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \leq k$?

NP-complete

Small Explanation Decision Problem

Given a set of equations E, a target equation s = t and $k \in \mathbb{N}$, does there exist an explanation $E' \subseteq E$ of s = t with $|E'| \leq k$?

NP-complete

Small Explanation is in NP

- 1. Guess $E' \subseteq E$, which is polynomial in input size.
- 2. Check $E' \models s = t$ with congruence closure algorithm in polynomial time.

NP-hardness

Reduction of SAT

- Given a propositional logic formula in CNF $\phi = C_1 \land \dots \land C_n$
- Using variables x_1, \ldots, x_m
- Construct a set of equations E and a target equation s = t, such that

 ϕ is satisfiable

if and only if

There exists an explanation $E' \subseteq E$ of s = t with $|E'| \leq 3n + 4m - 1$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

 c_1

 c_2

 c_3

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

 $c_1 c_1 - c_2 c_2 - c_3 c_3'$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E \ (a - b \rightsquigarrow a = b \in E)$

$$c_1 c_1 - c_2 c_2 - c_3 c_3'$$

 \hat{x}_1 \hat{x}_2

 \hat{x}_3

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E \ (a - b \rightsquigarrow a = b \in E)$

$$\begin{array}{c} \bot_1 & & & \hat{x}_1 & & & \top_1 \\ \\ \bot_2 & & & \hat{x}_2 & & & \top_2 \\ \\ \bot_3 & & & & \hat{x}_3 & & & \top_3 \end{array}$$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E \ (a - b \rightsquigarrow a = b \in E)$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E \ (a - b \rightsquigarrow a = b \in E)$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

$$\perp_1 - \hat{x}_1 - \top_1$$

$$\perp_2 - \hat{x}_2 - \top_2$$

$$\bot_3 - - \hat{x}_3 - - \top_3$$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

$$\perp_1 - - \hat{x}_1 - - \top_1$$

$$\perp_2 - \hat{x}_2 - \top_2$$

$$\perp_3 - - \hat{x}_3 - - \top_3$$
$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

$$\perp_1 - \hat{x}_1 - \top_1$$

$$\perp_2 - \hat{x}_2 - \top_2$$

$$\bot_3 \longrightarrow \hat{x}_3 \longrightarrow \top_3$$

$$\phi = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3)$$

Equations $E (a - b \rightsquigarrow a = b \in E)$

$$\perp_2 - \hat{x}_2 - \top_2$$

$$\perp_3 - - \hat{x}_3 - - \top_3$$

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \bot_i \in E'$$

 $\perp_3 - \hat{x}_3 - \top_3$

 $\perp_2 - \hat{x}_2 - \top_2$

 $\perp_3 - \hat{x}_3 - \top_3$

 $\perp_3 - \hat{x}_3 - \top_3$

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x}_i = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x}_i = \bot_i \in E'$$

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \bot_i \in E'$$

 Every short explanation contains the translation of an assignment

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \bot_i \in E'$$

 Every short explanation contains the translation of an assignment

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \bot_i \in E'$$

 Every short explanation contains the translation of an assignment

Satisfying assignments translate to short explanations

• Translate assignment \mathcal{I} to subset of equations E':

$$x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \top_i \in E'$$
$$\neg x_i \in \mathcal{I} \Leftrightarrow \hat{x_i} = \bot_i \in E'$$

 Every short explanation contains the translation of an assignment

Satisfying assignments translate to short explanations

 Non satisfying assignments do not translate to explanations

$$\perp_2 - \hat{x}_2 - \top_2$$

 $\perp_3 - \hat{x}_3 - \top_3$

 $\mathcal{I}_1 = \{x_1, \neg x_2, \neg x_3\}$ $\mathcal{I}_1 \models \phi$ Short explanation *E'*

Assignment:

$$\begin{aligned} \mathcal{I}_1 &= \{x_1, \neg x_2, \neg x_3\} \\ \mathcal{I}_1 &\models \phi \\ \text{Short explanation } E' \end{aligned}$$

 $\mathcal{I}_1 = \{x_1, \neg x_2, \neg x_3\}$ $\mathcal{I}_1 \models \phi$ Short explanation E'

 $\perp_2 - \hat{x}_2 - \top_2$

 $\perp_3 - \hat{x}_3 - \top_3$

 $\mathcal{I}_2 = \{x_1, \neg x_2, x_3\}$ $\mathcal{I}_2 \not\models \phi$ No explanation

Assignment:

$$\mathcal{I}_2 = \{x_1, \neg x_2, x_3\}$$
$$\mathcal{I}_2 \not\models \phi$$
No explanation

Assignment:

$$\mathcal{I}_2 = \{x_1, \neg x_2, x_3\}$$
$$\mathcal{I}_2 \not\models \phi$$
No explanation

NP-completeness of short explanation problem

In NP

 Guess explanation and check with congruence closure algorithm

NP-hardness

Reduction of NP-hard problem SAT

$\boldsymbol{\phi}$ with \boldsymbol{n} clauses and \boldsymbol{m} variables is satisfiable

if and only if

There exists an explanation $E' \subseteq E$ of s = t with $|E'| \leq 3n + 4m - 1$

Small explanations as shortest paths

Small explanations as shortest paths

Conclusion

Small conflict sets are desirable

Obtaining small conflict sets is NP-complete

Find algorithms/heuristics to construct small conflict sets

Thank you for your attention !

Questions ?