A Concurrency Problem with **Exponential DPLL**(\mathcal{T}) **Proofs**

A Problem Harder Than Diamonds

Liana Hadarean¹ Alex Horn¹ Tim King²

¹University of Oxford ²Verimag

July 19, 2015

SAT/SMT-based Concurrency Verification

[CAV '13] found bugs in:

A Concurrency Problem

Example

Let the value at memory location x be initialized to 0, i.e. [x] = 0.

Thread T_0	Thread T_1		Thread T_N
	$ local v_1 := [x] $		local $v_N := [x]$
local $v_0 := [x]$ assert $(v_0 \le N)$	$[x] := v_1 + 1$	•••	$[x] := v_N + 1$

A Concurrency Problem

Example

Let the value at memory location x be initialized to 0, i.e. [x] = 0.

Thread T_0	Thread T_1	Thread T_N
local $v_0 := [x]$ assert $(v_0 \le N)$	local $v_1 := [x]$ $[x] := v_1 + 1$	

Claim (Partial-Order DPLL(\mathcal{T}) Proof Complexity)

The size of $DPLL(\mathcal{T})$ proofs^{*} for this problem is at least N! using partial-order encodings of concurrency^{**}.

Our Contributions

- The concept of non-interfering critical assignments;
- A proof complexity theorem for Fixed-Alphabet DPLL(T);
- A factorial-size lower bound for the concurrency problem;
- Experiments with multiple SMT solvers & theory combinations.

Fixed-Alphabet DPLL(\mathcal{T}) Proofs

A simplified form of $DPLL(\mathcal{T})$ with only two rules:

- Propositional resolution (Res);
- Learning \mathcal{T} -valid clauses over the literals of a fixed alphabet of \mathcal{T} -atoms (\mathcal{T} -LEARN).

Fixed-Alphabet DPLL(\mathcal{T}) Proofs

A simplified form of $DPLL(\mathcal{T})$ with only two rules:

- Propositional resolution (Res);
- Learning \mathcal{T} -valid clauses over the literals of a fixed alphabet of \mathcal{T} -atoms (\mathcal{T} -LEARN).

Example (animation next)

$$\phi \triangleq (x < y \lor x = y) \land y < x$$

 ϕ is a QF LIA-unsatisfiable CNF formula.

- Fix $\mathcal{A} = \{x < y, x = y, y < x\}$ to be the alphabet of \mathcal{T} -atoms;
- let X = {A, B, C} be propositional variables;
- let $-^{\mathbb{B}} : \mathcal{A} \to X$ be an injective function, e.g. $(x < y)^{\mathbb{B}} = A$.

Using \mathcal{A} , X and $-^{\mathbb{B}}$, we now illustrate Res and \mathcal{T} -LEARN.

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy DPLL(\mathcal{T}) solver (with a fixed-alphabet):

$$\sim (\underbrace{A}_{A \leftarrow \top} \lor \underbrace{B}_{B \leftarrow \bot}) \land \underbrace{C}_{C \leftarrow \top}$$

(Bool Assignment)

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy $DPLL(\mathcal{T})$ solver (with a fixed-alphabet):

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy DPLL(\mathcal{T}) solver (with a fixed-alphabet):

$$(A \lor B) \land C$$

$$A \leftarrow T \quad B \leftarrow \bot \quad C \leftarrow T$$

$$(Bool Assignment)$$

$$(T-LEARN)$$

$$(A \lor B) \land C \land (\neg A \lor \neg C)$$

$$(T-LEARN)$$

$$(A \lor B) \land C \land (\neg A \lor \neg C)$$

$$(Bool Assignment)$$

$$(Bool Assignment)$$

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy DPLL(\mathcal{T}) solver (with a fixed-alphabet):

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy $DPLL(\mathcal{T})$ solver (with a fixed-alphabet):

$$(Bool Assignment)$$

$$A \leftarrow T \qquad B \leftarrow \bot \qquad C \leftarrow T$$

$$(A \lor B) \land C \land (\neg A \lor \neg C) \qquad (\mathcal{T}\text{-Lemma})$$

$$(\mathcal{T}\text{-Lemma})$$

$$A \leftarrow \bot \qquad B \leftarrow T \qquad C \leftarrow T \qquad T \qquad \bot$$

$$(A \lor B) \land C \land (\neg A \lor \neg C) \land (\neg B \lor \neg C) \qquad (\mathcal{T}\text{-Lemma})$$

$$(\mathcal{T}\text{-Lemma})$$

$$(\mathcal{T}\text{-Lemma})$$

 $\rightarrow \bot$ (i.e. formula is \mathcal{T} -unsatisfiable)

12

(Res, multiple steps)

$$\phi = (\mathbf{x} < \mathbf{y} \lor \mathbf{x} = \mathbf{y}) \land \mathbf{y} < \mathbf{x}$$

An execution of a lazy $DPLL(\mathcal{T})$ solver (with a fixed-alphabet):

$$(Bool Assignment)$$

$$A \lor B \land C$$

$$A \lor B \land C \land (\neg A \lor \neg C)$$

$$\mathcal{T}\text{-Lemma}$$

$$A \lor B \land C \land (\neg A \lor \neg C)$$

$$A \lor B \land C \land (\neg A \lor \neg C)$$

$$A \lor B \land C \land (\neg A \lor \neg C)$$

$$A \lor B \land C \land (\neg A \lor \neg C) \land (\neg B \lor \neg C)$$

$$(\mathcal{T}\text{-Lemma})$$

$$(\mathcal{T}\text{-Lemma})$$

$$(\mathcal{T}\text{-Lemma})$$

 $\rightarrow \bot$ (i.e. formula is \mathcal{T} -unsatisfiable)

13

(Res, multiple steps)

Known Challenges for DPLL(\mathcal{T}): Diamonds

Let
$$\phi \diamond$$
 be $\left(\bigwedge_{i=1}^{8} \left(\mathbf{v}_i = \mathbf{a}_i \wedge \mathbf{a}_i = \mathbf{v}_{i+1} \right) \vee \left(\mathbf{v}_i = \mathbf{b}_i \wedge \mathbf{b}_i = \mathbf{v}_{i+1} \right) \right) \wedge \mathbf{v}_1 \neq \mathbf{v}_9$.

A diamond:

Let
$$X = \{ /i, /i, /i, -i, -i : 1 \le i \le 8 \}$$
, e.g. $/i$ denotes $v_i = a_i$.

Known Challenges for DPLL(\mathcal{T}): Diamonds

Let
$$\phi_{\diamondsuit}$$
 be $\left(\bigwedge_{i=1}^{8} \left(v_i = a_i \wedge a_i = v_{i+1}\right) \vee \left(v_i = b_i \wedge b_i = v_{i+1}\right)\right) \wedge v_1 \neq v_9$.

- **1.** Let $M_1 = \{ /i, /i : 1 \le i \le 8 \} \cup \{ -- \}.$
- **2.** Then $M_1 \models \phi^{\mathbb{B}}_{\diamond}$. But M_1 leads to a (unique) \mathcal{T} -conflict.
- **3.** DPLL(\mathcal{T}) learns the \mathcal{T} -lemma $\neg M_1$.

Known Challenges for DPLL(\mathcal{T}): Diamonds

Let
$$\phi \diamond$$
 be $\left(\bigwedge_{i=1}^{8} \left(v_i = a_i \wedge a_i = v_{i+1} \right) \vee \left(v_i = b_i \wedge b_i = v_{i+1} \right) \right) \wedge v_1 \neq v_9$.

- **1.** Let $M_2 = \{ \setminus_1, \setminus_1 \} \cup \{ \setminus_i, \setminus_i : 2 \le i \le 8 \} \cup \{ -- \}.$
- **2.** Then $M_2 \models \phi_{\diamondsuit}^{\mathbb{B}}$. But M_2 leads to a (unique) \mathcal{T} -conflict.
- **3.** DPLL(\mathcal{T}) learns the \mathcal{T} -lemma $\neg M_2$.
- **4.** Note that $\neg M_1$ is disjoint from $\neg M_2$.
- **5.** In general, DPLL(\mathcal{T}) enumerates $2^8 \mathcal{T}$ -conflicts [LPAR '08].

Our DPLL(\mathcal{T}) Proof Complexity Theorem

A strict generalization of the diamonds problem:

Definition (Critical Assignments)

An assignment M is *critical* if $M \models \phi^{\mathbb{B}}$ and there is exactly one minimal \mathcal{T} -conflict $\neg L$ such that $\neg L^{\mathbb{B}} \subseteq M$. Let Q be a set of critical assignments for ϕ .

Our DPLL(\mathcal{T}) Proof Complexity Theorem

A strict generalization of the diamonds problem:

Definition (Critical Assignments)

An assignment M is *critical* if $M \models \phi^{\mathbb{B}}$ and there is exactly one minimal \mathcal{T} -conflict $\neg L$ such that $\neg L^{\mathbb{B}} \subseteq M$. Let Q be a set of critical assignments for ϕ .

Definition (Non-interfering Critical Assignments)

Q is non-interfering if, for all $M_i \neq M_j$ in Q, $\neg L_i^{\mathbb{B}}$ isn't a subset of M_j .

Our DPLL(\mathcal{T}) Proof Complexity Theorem

A strict generalization of the diamonds problem:

Definition (Critical Assignments)

An assignment M is *critical* if $M \models \phi^{\mathbb{B}}$ and there is exactly one minimal \mathcal{T} -conflict $\neg L$ such that $\neg L^{\mathbb{B}} \subseteq M$. Let Q be a set of critical assignments for ϕ .

Definition (Non-interfering Critical Assignments)

Q is non-interfering if, for all $M_i \neq M_j$ in Q, $\neg L_i^{\mathbb{B}}$ isn't a subset of M_j .

Theorem (DPLL(\mathcal{T}) Lower Bound Proof Complexity)

Let ϕ be an unsatisfiable $\mathcal T$ -formula, and Q be a non-interfering set of critical assignments for ϕ . Every Fixed-Alphabet-DPLL($\mathcal T$) proof that ϕ is UNSAT contains at least |Q| applications of $\mathcal T$ -LEARN.

A New Challenge Problem for SMT Community

We use the previous theorem to establish the factorial-size lower bound proof complexity of our concurrency problem challenge.

 $---\Omega(N!)$ (Concurrency Problem) $---\Omega(2^N)$ (Diamonds Problem)

SMT Encodings of Concurrency Problem

Thread T_0	Thread T_1		Thread T_N
r_0	<i>r</i> ₁		r_N
	<i>W</i> ₁	•••	w_N

For N = 2, if restricted to $T_1 \parallel T_2$, we get the following interleavings:

- (1) r_1 ; w_1 ; r_2 ; w_2 (2) r_1 ; r_2 ; w_1 ; w_2 (3) r_1 ; r_2 ; w_2 ; w_1
- (4) r_2 ; r_1 ; w_1 ; w_2 (5) r_2 ; r_1 ; w_2 ; w_1 (6) r_2 ; w_2 ; r_1 ; w_1 .

Symbolically encode all interleavings, e.g. [CAV '13, FORTE '15].

SMT Encodings of Concurrency Problem

Thread T_0	Thread T_1		Thread T_N
<i>r</i> ₀	r ₁ w ₁		r _N w _N

Let $R \triangleq \{r_0, \ldots, r_N\}$ and $W \triangleq \{w_{init}, w_0, \ldots, w_N\}$.

Our encodings are parameterized by three SMT theories:

• \mathcal{T}_C : clocks

• T_S: selections

• \mathcal{T}_V : value

Using \mathcal{T}_C , \mathcal{T}_S and \mathcal{T}_V , we encode partial-order axioms (see next).

Clock Constraints

Example

Preserved-program order (PPO) for $T_0 \parallel T_1 \parallel ... \parallel T_N$:

Example

By write consistency, writes in W are totally ordered in \mathcal{T}_C , e.g. either $w_1 < w_2$ or $w_2 < w_1$ in \mathcal{T}_C .

Selection and Value Constraints

Example

Selection and Value Constraints

Example

To encode that " r_3 reads from w_1 ":

- $s_{r_3} = s_{w_1}$ in \mathcal{T}_S
- $v_3 = 1$ in \mathcal{T}_V

Intuition: Factorial Lower Bound for Proof Size

Shuffle threads, e.g. for T_1 , T_2 and T_3 we get:

$$T_1; T_2; T_3; T_0$$
 (π_1)

$$T_2; T_1; T_3; T_0$$
 (π_2)

$$T_2; T_3; T_1; T_0$$
 (π_3)

$$\dots$$
 (π_k)

Each shuffling is satisfiable in $\mathcal{T}_C + \mathcal{T}_S$ but leads to a unique minimal \mathcal{T}_V -conflict:

$$v_1 = 0 \land v_2 = v_1 + 1 \land v_3 = v_2 + 1 \land v_{assert} = v_3 \land v_{assert} > N \quad (\pi_1)$$

$$v_2 = 0 \land v_1 = v_2 + 1 \land v_3 = v_1 + 1 \land v_{assert} = v_3 \land v_{assert} > N$$
 (π_2)

$$v_2 = 0 \land v_3 = v_2 + 1 \land v_1 = v_3 + 1 \land v_{assert} = v_3 \land v_{assert} > N$$
 (π_3)

$$\dots$$
 (π_k)

Factorial Lower Bound for Proof Size

Let ϕ^3 be a variant of the cubic-size encoding in [CAV '13] by our colleagues Alglave, Kroening and Tautschnig.

Theorem (Lower Bound for Cubic Partial-Order Encoding)

All Fixed-Alphabet-DPLL(\mathcal{T}) proofs for the problem challenge encoded with ϕ^3 contain at least N! applications of \mathcal{T} -LEARN.

We also studied a quadratic-size partial-order encoding [FORTE '15]. Here, we show that this asymptotically smaller encoding has also at least factorial-sized DPLL(\mathcal{T}) proofs!

Experiments with Two Partial-Order Encodings

 \mathcal{E}^3 and \mathcal{E}^2 are partial-order encodings of asymptotically different size, parameterized by three theories \mathcal{T}_C , \mathcal{T}_S and \mathcal{T}_V .

We instantiate $\langle \mathcal{T}_C, \mathcal{T}_S, \mathcal{T}_V \rangle$ to four configurations:

- 1. "real-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{R}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$
- 2. "bv-clk-int-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$
- 3. "real-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_\mathbb{R}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$
- 4. "bv-clk-bv-val": $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{BV}}$

We use the following SMT solvers: Boolector, CVC4, Yices2, Z3.

Example: "z3-bv-clk-int-val- \mathcal{E}^2 " denotes experiments with the $O(N^2)$ encoding using Z3 where $\mathcal{T}_C = \mathcal{T}_S = \mathcal{T}_{\mathbb{BV}}$ and $\mathcal{T}_V = \mathcal{T}_{\mathbb{Z}}$. We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour.

Experimental Results

Factorial growth of conflicts in fkp2013-unsat benchmark.

Concluding Remarks

• A simple, yet challenging, SMT benchmark:

Thread T_0	Thread T_1	Thread T_N
$\overline{ \mathbf{ocal} \ v_0 := [x] }$		
$assert(v_0 \le N)$	$[x] := v_1 + 1$	$ [x] := v_N + 1$

- A new diagnosis tool for SMT encodings:
 - **1.** Proof-size for $DPLL(\mathcal{T})$ via non-interfering critical assignments
 - 2. N! lower bound for two state-of-the-art partial-order encodings
 - 3. Theory and experiments pinpoint value constraints as culprit

Morgan Deters

Cubic-size Encoding of Concurrency Problem

Let ϕ^3 be the $O(N^3)$ partial-order encoding of $T_0 \parallel T_1 \parallel ... \parallel T_N$:

$$C_{W_{init}} < C_{r_{assert}} \land \bigwedge_{i=1...N} C_{W_{init}} < C_{r_i} < C_{W_i} \land \bigwedge_{W_i,W' \in W,W \neq W'} (C_W < C_{W'} \lor C_{W'} < C_W) \land S_W \neq S_{W'} \land W_i \land$$

SC-relaxed Consistency Encoding

Let *E* be the set of events, \ll be the PPO, $val : E \rightarrow \mathcal{T}_V$ -terms, $guard : E \rightarrow \mathcal{T}_V$ -formulas and *L* be the set of memory locations.

$$\begin{split} & \text{PPO} \triangleq \bigwedge \left\{ (guard(e) \land guard(e')) \Rightarrow (c_e < c_{e'}) \mid e, e' \in E \colon e \ll e' \right\} \\ & \text{WW}[x] \triangleq \bigwedge \left\{ (c_w < c_{w'} \lor c_{w'} < c_w) \land s_w \neq s_{w'} \mid w, w' \in W_x \land w \neq w' \right\} \\ & \text{RW}[x] \triangleq \bigwedge \left\{ (c_w < c_r \lor c_r < c_w \mid w \in W_x \land r \in R_x \right\} \\ & \text{RF}_{\text{TO}}[x] \triangleq \bigwedge \left\{ (guard(r) \Rightarrow \bigvee \left\{ s_w = s_r \mid w \in W_x \right\} \mid r \in R_x \right\} \\ & \text{RF}^3[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (guard(w) \land val(w) = v_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \text{FR}[x] \triangleq \bigwedge \left\{ (s_w = s_r \land c_w < c_{w'} \land guard(w')) \Rightarrow (c_r < c_{w'}) \mid w, w' \in W_x \land r \in R_x \right\} \\ & \mathcal{E}^3 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^3[x] \land \text{FR}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \\ & \text{RF}^2[x] \triangleq \bigwedge \left\{ (s_w = s_r) \Rightarrow (c_w = \sup_r \land guard(w) \land val(w) = v_r \land c_w < c_r) \mid r \in R_x \land w \in W_x \right\} \\ & \mathcal{E}^2 \triangleq \bigwedge \left\{ \text{RF}_{\text{TO}}[x] \land \text{RF}^2[x] \land \text{SUP}[x] \land \text{WW}[x] \land \text{RW}[x] \mid x \in L \right\} \land \text{PPO} \end{split}$$