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A Concurrency Problem

Example
Let the value at memory location x be initialized to 0, i.e. [x] = 0.

Thread Tg Thread T Thread Ty

local vy :=[x]
[X] :=vi +1

local vy :=[x]

local vy :=[x]
[X] := vy +1

assert(vg < N)




A Concurrency Problem

Example
Let the value at memory location x be initialized to 0, i.e. [x] = 0.

Thread Tg Thread T Thread Ty

Claim (Partial-Order DPLL(7") Proof Complexity)

The size of DPLL(7") proofs” for this problem is at least N! using
partial-order encodings of concurrency .

local vy :=[x]
[X] :=vi +1

local vy :=[x]

local vy :=[x]
[X] := vy +1

assert(vg < N)




Our Contributions

The concept of non-interfering critical assignments;

A proof complexity theorem for Fixed-Alphabet DPLL(7");

A factorial-size lower bound for the concurrency problem;
Experiments with multiple SMT solvers & theory combinations.



Fixed-Alphabet DPLL(7") Proofs

A simplified form of DPLL(7") with only two rules:
e Propositional resolution (REes);

e |Learning 7 -valid clauses over the literals of a fixed alphabet of
T -atoms (7 -LEARN).



Fixed-Alphabet DPLL(7") Proofs

A simplified form of DPLL(7") with only two rules:
e Propositional resolution (REes);

e |Learning 7 -valid clauses over the literals of a fixed alphabet of
T -atoms (7 -LEARN).

Example (animation next)

P=(X<YyVX=y)Ay<X
¢ is a QF _LIA-unsatisfiable CNF formula.
e Fix A={x<y,x=y,y < x} to be the alphabet of 7-atoms;

e let X = {A, B, C} be propositional variables;
e let -B: A — X be an injective function, e.g. (x < y)B = A.

Using A, X and —B, we now illustrate Res and 7 -LEARN.



Example: Fixed-Alphabet DPLL(7") Proofs

Pp=(X<yVvVx=y)Ay<x
An execution of a lazy DPLL(7") solver (with a fixed-alphabet):

~( A Vv B )An C (Bool Assignment)
~——  —— N——
AT Be—1 CeT
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Example: Fixed-Alphabet DPLL(7") Proofs

Pp=(X<yVvVx=y)Ay<x

An execution of a lazy DPLL(7") solver (with a fixed-alphabet):

~( A Vv B )A C (Bool Assignment)
S~ S~—— S~
AT Be—1 Ce—T
~ (AVB)ACA (A V-0) (7 -LEARN)
N———
7 —-Lemma

~( A Vv B)A C A(—-A v =C) (BoolAssignment)

~——  —— —— ~——  ——

A—1 BT CeT T L
~(AVB)ACA(=AV=C)A(=BvV=0) (7 -LEARN)
N ——
7 —-Lemma

~» L (i.e. formula is 7 -unsatisfiable) (Res, multiple steps)
13



Known Challenges for DPLL(7"): Diamonds

Let Qo be( (V, =ajAaj= V1) V(vi=bAbj= V,'+1))/\ Vi # Vo.

/\/\/\ /\_
\/\/\/ \/
A diamond:
SN
\/

Let X = {/,,\,-,\,-,/,-,— t1<i<8 } e.g. /i denotes v; = a;.
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3. DPLL(T) learns the 7 -lemma - Mj.



Known Challenges for DPLL(7"): Diamonds

Let Qo be( (V, =ajAaj= V1) V(vi=bAbj= V,'+1))/\ Vi # Vo.

/\/\/\ /\
\/\/\/ \/

Let Mo ={\1, /1 JU{/ i\ 2<i<8luf{—].

Then M E ¢B. But M- leads to a (unique) 7 -conflict.
DPLL(7") learns the 7 -lemma —-Mj.

Note that =M is disjoint from =M.

In general, DPLL(7") enumerates 28 7 -conflicts [LPAR ’08].

arowbdb =



Our DPLL(7") Proof Complexity Theorem

A strict generalization of the diamonds problem:

Definition (Critical Assignments)

An assignment M is critical if M = ¢® and there is exactly one
minimal 7 -conflict =L such that -L® ¢ M. Let Q be a set of
critical assignments for ¢.
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Our DPLL(7") Proof Complexity Theorem

A strict generalization of the diamonds problem:

Definition (Critical Assignments)

An assignment M is critical if M = ¢® and there is exactly one
minimal 7 -conflict -L such that =L® ¢ M. Let Q be a set of
critical assignments for ¢.

Definition (Non-interfering Critical Assignments)
Q is non-interfering if, for all M; # M; in Q, ﬁL}B isn’t a subset of M;.

Theorem (DPLL(7") Lower Bound Proof Complexity)

Let ¢ be an unsatisfiable 7 -formula, and Q be a non-interfering
set of critical assignments for ¢. Every Fixed-Alphabet-DPLL(7")
proof that ¢ is UNSAT contains at least |Q| applications of 7 -LEARN.



A New Challenge Problem for SMT Community

We use the previous theorem to establish the factorial-size lower
bound proof complexity of our concurrency problem challenge.

800 |
600 | '
400 |

200 |

2 4 6

--- Q(N!") (Concurrency Problem)
— Q(2N) (Diamonds Problem)
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SMT Encodings of Concurrency Problem

Thread Tg Thread T; Thread Ty
i) v I'n
W, ... Wa

For N = 2, if restricted to T4 || T2, we get the following interleavings:

(1) riswisro;wo (2) rsra;wy;wa o (3) rq; 125 wo; wy
(4) ro;ri;wyswa o (B) rosryswo;wy o (6) re; wajry; wa.

Symbolically encode all interleavings, e.g. [CAV 13, FORTE ’15].

21



SMT Encodings of Concurrency Problem

Thread Tg Thread T; Thread Ty
i) v I'n
W, ... Wa

LetR = {f'o, ceey I’N} and W £ {Winit/ W, ..., WN}.

Our encodings are parameterized by three SMT theories:
e T c: clocks

e Tg: selections

e Ty:value

Using 7¢, 7s and 7y, we encode partial-order axioms (see next).

22



Clock Constraints

Example

Preserved-program order (PPO) for To || T1 || ... || Tn:
Winit

o r . 'n
W1 . WnN

Example

By write consistency, writes in W are totally ordered in 7¢, e.g.
either wy < wo or wo < wyq in 7.

23



Selection and Value Constraints
Example

Wy Ty To

[X]:=1 ]| [x]:=2
S—— S——
3 w2 Wi w2

24



Selection and Value Constraints

Example
Wy Ty To T3
y X]:=1 || ] :=2 || v:i=[x]
N—— —— ————
r3 W2 W1 Wo rs

To encode that “r3 reads from w;”:
i Sr3 = SW1 |n TS
evy=1inTy

25



Intuition: Factorial Lower Bound for Proof Size
Shuffle threads, e.g. for T4, T2 and T3 we get:

Ty;T2; T3; To (1)
T2; T1;T3; To (12)
T2;T3;T1;To (73)

(Tk)

Each shuffling is satisfiable in 7¢ + 75 but leads to a unique
minimal 7 -conflict:

V‘]=O/\V2=V1+1/\V3=V2+1/\Vassert=v3/\Vassert>N ( )
Vo=0AVi=Va+1AV3=Vi+1AVassert =V3 AVagsert >N (712)
Vo=0AV3=Vo+1AVy=V3+1AVagsert = V3 AVagsert > N (713)

(Ttk)



Factorial Lower Bound for Proof Size

Let ¢° be a variant of the cubic-size encoding in [CAV ’13] by our
colleagues Alglave, Kroening and Tautschnig.

Theorem (Lower Bound for Cubic Partial-Order Encoding)

All Fixed-Alphabet-DPLL(7") proofs for the problem challenge
encoded with ¢* contain at least N! applications of 7 -LEARN.

We also studied a quadratic-size partial-order encoding
[FORTE ’15]. Here, we show that this asymptotically smaller
encoding has also at least factorial-sized DPLL(7") proofs!

27



Experiments with Two Partial-Order Encodings

&3 and &? are partial-order encodings of asymptotically different
size, parameterized by three theories 7¢, 7s and 7.

We instantiate (7 ¢, 7s, 7v) to four configurations:
1. f“real-clk-int-val” T¢=7s=Trand7y =7z
2. “bv-clk-int-val’: Tc=Ts=Tpvand Ty =Tz
3. ‘real-clk-bv-val”: T¢c=7s=Trand 7y =Tpy
4. “pbv-clk-bv-val’: TC = Ts = T]BV and TV = TJBV

We use the following SMT solvers: Boolector, CVC4, Yices2, Z3.
Example: “z3-bv-clk-int-val-&?” denotes experiments with the

O(N?) encoding using Z3 where T¢ =75 =Ty and 7y = T z.
We have a total of 56 SMT-LIB benchmarks. Timeout is 1 hour.

28



Experimental Results

cvc4-real-clk-int-val-{&€3, &2}

107 I cvcd-real-clk-bv-val-{&3, &2}
2 cvc4-bv-clk-int-val-{&E3, &2}
% 105 |- cvc4-bv-clk-bv-val-{&3, &2}
I;: z3-real-clk-int-val-{E3, &2)
c“g ol z3-real-clk-bv-val-{&8, &2}
é 23-bv-clk-int-val-{&8, &2
Z 23-bv-clk-bv-val-(E2, &2}

10! |- yices-real-clk-int-val-|€3, &2)

é :1 é é ; é é yices-bv-clk-bv-val-{&3, &2}
Number of threads (N) ~ ...... boolector-bv-clk-bv-val-{€3, &2}

Factorial growth of conflicts in fkp2013-unsat benchmark.
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Concluding Remarks
e A simple, yet challenging, SMT benchmark:

Thread To Thread T4 Thread Ty
local vy :=[x] || local vy :=[x] local vy :=[x]
assert(vo < N) || [x] := vy +1 T X =N+

¢ A new diagnosis tool for SMT encodings:
1. Proof-size for DPLL(7") via non-interfering critical assignments
2. N!lower bound for two state-of-the-art partial-order encodings
3. Theory and experiments pinpoint value constraints as culprit

Morgan Deters %



Cubic-size Encoding of Concurrency Problem

Let ¢° be the O(N®) partial-order encoding of To || T1 || ... || Tn:
CWinit < Crassert A /\ Cwiny < Cr; < Cw; A /\ (CW <Cw VCw < CW) ASw # Sw A
i=1..N w,w’'eW,w#w’
PPO WWI[x]
(Cw <CrVCr <CW)/\/\[\/ Sw = SrJ/\V’asserr >NA
weW,reR reR \weW
[
RW[x] RF7o[X] assert(vo<N)
/\ (Sw=5sr) = Cw <c,/\/\(sw,.m, =5)=0=V,A /\ (Sw,=8r) =2V, +1=v,
weW,reR reR i=1..N,reR
RF3[x] RF3[x] RF3[x]

(Sw =8r ACw < Cw) = Cr < Cw
w,weW,reR

FR[x]
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SC-relaxed Consistency Encoding

Let E be the set of events, <« be the PPO, val : E — 7-terms,
guard : E — Ty-formulas and L be the set of memory locations.

PPO = /\{ guard(e) A guard(e’)) = (ce < Ce’) | €, €E: e x €’}
WWix] £ A\ {(
RW[x]é/\{cW<c,VCr<cW|weWX/\reRX}
RFrolx] = /\ (guard(r) = V/ {sw =5/ | w € Wy} | r € Ry}

RF3[x] A
FR[x] A

{
{
A {RFro[X] A RF°[x] A FR[X] A WW[x] A RW[X] | x € L} A PPO

Cw <Cw VCw <Cw)ASw #Sw | W, W e Wy Aw # W'}

(sw = sr) = (guard(w) A val(w) = v, Acy <Cf) | r € Ry A w e Wy}
(

Sw =Sr ACw < Cw A guard(w’)) = (¢, < cw) | w,w € Wy AreRy}

RF%[x] 2 /\ {(sw =sr) = (cw = sup, A guard(w) A val(w) =v, Acy <Cr) | r € Ry Awe Wy}
SUP[x] = \ {(cw < cr A guard(w)) = (cw < SUp,) | r € Re A w € Wy
g A {RFTo[x] A RF2[x] A SUP[x] A WW[x] A RW[x] | x € L} A PPO
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